
The CRIME attack

HTTPS:// Secure HTTP

HTTPS provides:
● Confidentiality (Encryption),
● Integrity (Message Authentication Code),
● Authenticity (Certificates)
CRIME decrypts HTTPS traffic to steal cookies and hijack
sessions.

How can you become a victim of
CRIME?

● 1st requirement: the
attacker can sniff your
network traffic.
○ You share a (W)LAN.
○ He's hacked your home

router.
○ He's your network

admin, ISP or
government.

How can you become a victim of
CRIME?

● 2nd requirement: you visit evil.com.
○ You click on a link.
○ Or you surf a non-HTTPS site.

CRIME injection

C in CRIME is compression

● Transmit or store the same amount of data
in fewer bits.

● When you see compression in Internet
protocols, it's probably DEFLATE.

● zlib and gzip are the two most popular
DEFLATE wrappers.

Compression is everywhere

● TLS layer compression.

● Application layer compression
○ SPDY header compression,
○ HTTP response gzip compression,
○ Not so sure if exploitable: SSH, PPTP, OpenVPN,

XMPP, IMAP, SMTP, etc.

● We will discuss TLS compression, SPDY
and HTTP gzip.

DEFLATE

● Lossless compression reducing bits by
removing redundancy.

● Best way to learn: RFC 1951 and puff.c.

● DEFLATE consists of two sub algorithms:
a. LZ77, and
b. Huffman coding.

DEFLATE: LZ77

● Google is so googley -> Google is so g(-13, 5)y

● It scans input, looks for repeated strings and
replaces them with back-references to last
occurrence as (distance, length).

● Most important parameter: window size.
○ How far does it go back to search for

repetition?
○ Also called dictionary size.

DEFLATE: Huffman coding

● Replace common bytes with shorter codes.

● Build a table that maps each byte with a
unique code.
○ Dynamic table: built based on the input, codes can

be as short as 1 or 2 bits.
○ Fixed table: specified in the RFC, longer codes (7-9

bits), good for English or short input.

R in CRIME is ratio

● How much redundancy the message has.

● More redundancy -> better compression
ratio -> smaller request length.

● len(compress(input + secret))
○ input is attacker-controlled.
○ If it has some redundancy with secret, length will be

smaller.
○ Idea: change input and measure length to guess

secret.

I in CRIME is info-leak

● SSL/TLS doesn't hide request/response
length.

CRIME algorithm

● len(encrypt(compress(input +
public + secret)) is leaked
○ input: URL path
○ public: known headers
○ secret: cookie

● Algorithm:
○ Make a guess, ask browser to send a

request with path as guess.
○ Observe length of the request that was

sent.
○ Correct guess is when length is

different than usual.

GET /twid=a
Host: twitter.com
User-Agent: Chrome
Cookie: twid=secret
...
GET /twid=s
Host: twitter.com
User-Agent: Chrome
Cookie: twid=secret

CRIME in a slide

ME in CRIME is mass exploitation

● Worked for 45% of browsers: Chrome and
Firefox.

● Worked for all SPDY servers: Gmail, Twitter,
etc.

● Worked for 40% of SSL/TLS servers:
Dropbox, GitHub, etc.

ME in CRIME is also made easy

● JavaScript is optional.

● Fast Hollywood-style decryption. The best
algorithm requires on average 6 requests to
decrypt 1 cookie byte.

● Worked for all TLS versions and all
ciphersuites (AES and RC4).

CRIME is the new BEAST

● BEAST opened the path to CRIME
○ Easy to perform chosen-plaintext attack against

HTTPS.
○ Use URL path to decrypt cookie.
○ Move data across layer boundary.

● What's new?
○ SSL compressed record length info-leak, instead of

CBC mode with chained IVs vulnerability.
○ New boundaries: compressor window size and TLS

record size, instead of block cipher's block size.

So length is leaked

● Length is the number of
bytes, but DEFLATE
outputs bits.

● Length of request with
a match must have a
difference of at least 8
bits.
○ A 63-bit request looks

exactly the same as a 59-
bit on the wire.

First attack: Two Tries

● Recall window size: if the distance from the current
string to the previous occurrence is greater than window
size, it won't be replaced.

● Window size is essentially a data boundary. Let's move
thing across it!

● For each guess, send two requests (hence Two Tries)
○ req1 with the guess inside the window of the cookie.
○ req2 is a permutation of req1, with the guess outside.

Two Tries: length difference

● If guess is incorrect:
○ guess won't be replaced by a reference to cookie in

neither req1 nor req2.
○ hence, len(req1) == len(req2).

● If guess is correct:
○ guess will be replaced by a reference to cookie in

req1.
○ guess won't be replaced in req2, because it's outside

the window.
○ hence, len(req1) != len(req2).

Two Tries

● Oracle:
○ If len(req1) != len(req2), then the guess is

correct;
○ It's incorrect otherwise.

GET /ABCDEFtwid=s<padding>Cookie: twid=secret

GET /twid=sABCDEF<padding>Cookie: twid=secret

Two Tries

● Pros:
○ Work for TLS compression, SPDY and HTTP gzip as

well.
○ False positive free with a few tricks.

● Cons
○ Require O(W) requests, where W is cookie charset.
○ May fail when cookie contains repeated strings.
○ Depend on deep understanding of DEFLATE and

zlib's deflate.c to create a 8-bit difference.

SPDY

● A new open networking protocol for
transporting web content.

● Similar to HTTP, with particular goals to
reduce web page load latency and improve
web security.

● SPDY achieves reduced latency through
compression, multiplexing, and prioritization.

SPDY

● Standardized: selected by IETF as the
starting point for HTTP 2.0.

● Servers: Google, Twitter, Wordpress, F5
Networks, Cloudflare, Apache httpd, nginx,
etc.

● Clients: Chrome, Firefox, Opera (beta), etc.

Compression in SPDY

● DEFLATE is used to compress headers.

● SPDY uses the same compression context
for all requests in one direction on a
connection.
○ repeated strings in new requests can be replaced by

references to old requests.

CRIME for SPDY

● The shared compression context is a two-
edged sword
○ Better compression.
○ Subsequent compressed headers are so small that

zlib decides to use fixed Huffman table.

● Recall that fixed Huffman table uses 7-9 bit
codes. Hence, it's easier to have a difference
of 8 bits.

CRIME for SPDY

1. Send a request to "reset" the compression
context (i.e., prepare the dictionary).

2. Send another request with a wrong guess to
get the base length.

3. For each guess, send a request. Use the
base length to spot possible correct
guesses.

CRIME for SPDY

GET /aatwid=a HTTP/1.1\r\n
Host: twitter.com\r\n
User-Agent: Chrome\r\n
Cookie: twid=secret\r\n

GET /bbtwid=b HTTP/1.1\r\n
Host: twitter.com\r\n
User-Agent: Chrome\r\n
Cookie: twid=secret\r\n

(-84, 5)aa(-20, 5)a(-84, 71)

(-84, 5)bb(-20, 5)b(-84, 71)

CRIME for SPDY

GET /rrtwid=r HTTP/1.1\r\n
Host: twitter.com\r\n
User-Agent: Chrome\r\n
Cookie: twid=secret\r\n

GET /sstwid=s HTTP/1.1\r\n
Host: twitter.com\r\n
User-Agent: Chrome\r\n
Cookie: twid=secret\r\n

(-84, 5)rr(-20, 5)r(-84, 71)

(-84, 5)ss(-20, 6)(-84, 71)

CRIME for SPDY

● Pros
○ Still O(W), but with a smaller constant than Two

Tries.
○ Very fast, thanks to SPDY.
○ Also false positive free.

● Cons
○ Can't send many requests at a time if server sets a

maximum limit.
○ Different browsers have different implementations of

SPDY header compression.

CRIME for SPDY
● Workaround

○ Chrome and Firefox have disabled header
compression in their SPDY implementations.

● SPDY/4 will make CRIME irrelevant
(hopefully).

Compression in TLS

● Specified in RFC 3749 (DEFLATE) and RFC
3943 (LZS).

● Chrome (NSS), OpenSSL, GnuTLS, etc.
implement DEFLATE.

● If data is larger than maximum record size
(16K), it split-then-compress each record
independently (in a separate zlib context).

CRIME for TLS Compression: 16K-1

● 16K is essentially another boundary. BEAST's chosen-
boundary attack strikes again!

● Make a request so big that it will be split into two records
such that:
○ 1st record: GET /<padding>Cookie: twid=s
○ 2nd record: ecret

● Simulate the compression of the 1st record for every
candidate.

● Send the request, obtain the compressed length of its 1st
record. Use it to select possible correct bytes.

16K-1

16K-1 POC
def next_byte(cookie, known, alphabet=BASE64):

candidates = list(alphabet)
while len(candidates) != 1:

url = random_16K_url(known)
record_lens = query(url)
length = record_lens[0]
record = "GET /%s%s%s" (url, REQ, known)
good = []
for c in candidates:

if len(compress(record + c)) == length:
good.append(c)

candidates = good
return candidates[0]

CRIME for TLS Compression

● Pros
○ Require only O(logW) requests. Can choose

between longer offline compression or larger number
of online requests.

○ False positive free.
○ Compression algorithm independent.

● Cons
○ While server-side deployment is 40%, Chrome was

the only browser that supported TLS compression.
○ zlib versions on victim and attacker should be the

same.

CRIME for TLS Compression

● Workaround
○ Chrome has disabled compression in its ClientHello.

HTTP response gzip compression

● The most popular compression on the
Internet.

CRIME for HTTP gzip

● Requirement: server echoes back some
client input in the response (e.g., /search?
q=crimeN0tF0uddd).

● Use the echoed input to extract PII or XSRF
token embedded in the response.

● Two Tries may work, but we haven't tested it
yet.

"We believe"

● TLS compression may resurrect in the near
future
○ "Browsers are not the only TLS clients!"

● HTTP gzip may be a bigger problem than
both SPDY and TLS compression
○ If you control the network, then a XSRF token is as

good as, if not better, a session cookie.

● Remember: compression is everywhere.

Thanks

● Google, Mozilla, and Dropbox.

● Dan Boneh, Agustin Gianni, Kenny
Paterson, Marsh Ray, Eduardo Vela and
many other friends.

● EKOPARTY xD xD xD!!

Related work

● John Kelsey, Compression and Information
Leakage of Plaintext.

● Adam Langley, post to SPDY mailing list.

https://groups.google.com/forum/#!msg/spdy-dev/B_ulCnBjSug/8caVF1rFJAkJ

Questions?
https://twitter.com/julianor or thaidn@gmail.com

