The CRIME attack

starring Juliano Rizzo and Thai Ilun'h_g

HTTPS:// Secure HTTP

HTTPS provides:

e Confidentiality (Encryption),

e Integrity (Message Authentication Code),

e Authenticity (Certificates)

CRIME decrypts HTTPS traffic to steal cookies and hijack
sessions.

How can you become a victim of
CRIME?

e 1st requirement: the |
attacker can sniff your |

network traffic.

o You share a (W)LAN.

o He's hacked your home
router.

o He's your network
admin, ISP or

government. "nf‘gtngggmmat it unesnt
. work at'Starbucks

How can you become a victim of
CRIME?

e 2nd requirement: you visit evil.com.

o You click on a link.
o Oryou surfa non-HTTPS site.

';;h‘““ :

"How often does an attacker have .enough
control of a PC to make the required
requests, hut not just key log the real
password? This attack is purely academic
until it's usahle from packet.captures only:"

CRIME injection

V)
Secure Web Any non-
Server

attacker injects
CRIME
JavaScript

C in CRIME is compression

Transmit or store the same amount of data
In fewer bits.

When you see compression in Internet
protocols, it's probably DEFLATE.

zlib and gzip are the two most popular
DEFLATE wrappers.

Compression is everywhere

e TLS layer compression.

e Application layer compression
o SPDY header compression,
o HTTP response gzip compression,
o Not so sure if exploitable: SSH, PPTP, OpenVPN,
XMPP, IMAP, SMTP, etc.

e \We will discuss TLS compression, SPDY
and HTTP gzip.

DEFLATE

e | ossless compression reducing bits by
removing redundancy.

e Best way to learn: RFC 1951 and puff.c.

e DEFLATE consists of two sub algorithms:

a. LZ77, and
b. Huffman coding.

DEFLATE: LZ77
e (Google is so googley -> Google is so g(-13, 95)y

e It scans input, looks for repeated strings and
replaces them with back-references to last
occurrence as (distance, length).

e Most important parameter: window size.
o How far does it go back to search for
repetition?
o Also called dictionary size.

DEFLATE: Huffman coding

e Replace common bytes with shorter codes.

e Build a table that maps each byte with a

unique code.

o Dynamic table: built based on the input, codes can
be as short as 1 or 2 bits.

o Fixed table: specified in the RFC, longer codes (7-9
bits), good for English or short input.

achievement uniocked

P

finally understand how compression works after all these years

R in CRIME is ratio

e How much redundancy the message has.

e More redundancy -> better compression
ratio -> smaller request length.

e len(compress(input + secret))
o input is attacker-controlled.
o If it has some redundancy with secret, length will be

smaller.
o |dea: change input and measure length to guess

secret.

| in CRIME is info-leak

e SSL/TLS doesn't hide request/response
length.

oV J.091491 1I99.09. 1LOUV. 02 1l9£. 1U0. V. L7 & 1w HLLpb & IJTDTT9 LAWN] ch—DJLUJ R
81 9.964145 199.59.150.39 192.168.0.172 TLSv1 Application Data
82 9.964217 192.168.0.172 199.59.150. 39 TCP 59994 > https [ACK] Seq=2981 Ac
9.969836 .59.150.39 .168.0.172 Application Data
84 9.969870 192.168.0.172 199.59.150. 39 TCP 59994 > https [ACK] Seq=2981 Ac
85 9.970168 199.59.150.39 192.168.0.172 TLSv1 Application Data
86 9.970183 192.168.0.172 199.59.150. 39 TCP 59994 > https [ACK] Seq=2981 Ac'
R7 Q Q70ns14Q 1Qa sQ 150 24 192 1RR N 172 Tl Qu1 Annlircatinn Nata
«&E B Il

aaaaaaa

P Iransmission CONTrol ProTtocol, Src POrT: NTIPS (443), UST POrtT: S9994 (59994), Seq: 35586, ACK: 2981, Len: /59
v Secure Socket Layer
¥ TLSvl Record Layer: Application Data Protocol: http
Content Type: Application Data (23)
Version: TLS 1.0 (0x0301)

Length: 754

Encrypted Application Data: C67B0275849307BSA0OBEES7B998341B6BA37SE08123C8308B. . .

4444444

2| nmonn T T N [
0040 le Oc 17 03 01 c6 7b 02 75 84 93 07 b5 a0 A S TI
0050 b6 e9 7b 99 83 41 b6 ba 37 Se 08 12 3c 83 0b 59 ..{..A.. 7*..<..Y |
0060 44 67 4f 18 85 54 a7 72 f7 5f f2 e8 67 ec 60 ee DgO0..T.r ._..g."

0070 23 86 93 3c cb 59 88 53 b2 fd 3c d2 ff ob 4f 40 #..<.Y.S ..<...0é

-~~~ e~ N —~— e~ -~ -~ a o~ -

9 Length of SSL record data (s... i Packets: 98 D|splayed 98 Marked: O] Profile: Default

CRIME algorithm

len(encrypt(compress(input +
public + secret)) is leaked

O input: URL path

O public: known headers

O secret: cookie

Algorithm:

O Make a guess, ask browser to send a
request with path as guess.

O Observe length of the request that was
sent.

O Correct guess is when length is
different than usual.

GET/

Host: twitter.com
User-Agent: Chrome
Cookie: twid=secret

GET/

Host: twitter.com
User-Agent: Chrome
Cookie: twid=secret

CRIME in a slide

3. Attacker can
= see encrypted
SV packet lengths

Secure We_.b

2. CRIME Server R
JavaScript ~ s,
makes a

request to the
target server

o 1. Attacker
Victim makes a guess

ME in CRIME is mass exploitation

e \Worked for 45% of browsers: Chrome and
Firefox.

e \Worked for all SPDY servers: Gmail, Twitter,
etc.

e \Worked for 40% of SSL/TLS servers:
Dropbox, GitHub, etc.

ME in CRIME is also made easy

e JavaScript is optional.

e Fast Hollywood-style decryption. The best
algorithm requires on average 6 requests to
decrypt 1 cookie byte.

e \Worked for all TLS versions and all
ciphersuites (AES and RC4).

CRIME is the new BEAST

e BEAST opened the path to CRIME
o Easy to perform chosen-plaintext attack against
HTTPS.
o Use URL path to decrypt cookie.
o Move data across layer boundary.

e \What's new?
o SSL compressed record length info-leak, instead of
CBC mode with chained Vs vulnerability.
o New boundaries: compressor window size and TLS
record size, instead of block cipher's block size.

So length is leaked

° Length IS the number of | don't always make a difference
bytes, but DEFLATE AT,
outputs bits. ‘il b
® | ength of request with
a match must have a
difference of at least 8

bits.

O A 63-bit request looks %
exactly the same as a 59- M
bit on the wire. | -

e
b=
o

but when I do, | make sure
thatit's at least 8-hit

)
i
1

First attack: Two Tries

e Recall window size: if the distance from the current
string to the previous occurrence is greater than window
size, it won't be replaced.

e \Window size is essentially a data boundary. Let's move
thing across it!

e For each guess, send two requests (hence Two Tries)
O reqg1 with the guess inside the window of the cookie.
O req2 is a permutation of req1, with the guess outside.

Two Tries: length difference

e [f guess is incorrect:
o guess won't be replaced by a reference to cookie in
neither req1 nor req2.
o hence, len(reg1) == len(req2).

e [f guess is correct:
o guess will be replaced by a reference to cookie in
req1.
o guess won't be replaced in req2, because it's outside
the window.
o hence, len(req1) != len(req2).

Two Tries

e Oracle:
o Iflen(req1) !=len(req2), then the guess is
correct;
o It's incorrect otherwise.

GET /ABCDEFtwid=s<padding>Cookie: twid=secret

GET /twid=sABCDEF<padding>Cookie: twid=secret

Two Tries

e Pros:
o Work for TLS compression, SPDY and HTTP gzip as
well.
o False positive free with a few tricks.

e Cons
o Require O(W) requests, where W is cookie charset.
o May fail when cookie contains repeated strings.
o Depend on deep understanding of DEFLATE and
zlib's deflate.c to create a 8-bit difference.

SPDY

e A new open networking protocol for
transporting web content.

e Similar to HTTP, with particular goals to

reduce web page load latency and improve
web security.

e SPDY achieves reduced latency through
compression, multiplexing, and prioritization.

SPDY

e Standardized: selected by IETF as the
starting point for HTTP 2.0.

e Servers: Google, Twitter, Wordpress, F5
Networks, Cloudflare, Apache httpd, nginx,
etc.

e Clients: Chrome, Firefox, Opera (beta), etc.

Compression in SPDY

e DEFLATE Is used to compress headers.

e SPDY uses the same compression context
for all requests in one direction on a

connection.
o repeated strings in new requests can be replaced by
references to old requests.

CRIME for SPDY

e [he shared compression context is a two-

edged sword

o Better compression.

o Subsequent compressed headers are so small that
zlib decides to use fixed Huffman table.

e Recall that fixed Huffman table uses 7-9 bit

codes. Hence, it's easier to have a difference
of 8 hits.

CRIME for SPDY

1. Send a request to "reset" the compression
context (i.e., prepare the dictionary).

2. Send another request with a wrong guess to
get the base length.

3. For each guess, send a request. Use the
base length to spot possible correct
guesses.

CRIME for SPDY

GET / HTTP/1.1\r\n
Host: twitter.com\r\n
User-Agent: Chrome\r\n
Cookie: twid=secref\r\n

GET/ HTTP/1.1\r\n
Host: twitter.com\r\n
User-Agent: Chrome\r\n
Cookie: twid=secref\r\n

(-84, 5)aa(-20, 5)a(-84, 71)

(-84, 5)bb(-20, 5)b(-84, 71)

CRIME for SPDY

GET / HTTP/1.1\r\n
Host: twitter.com\r\n
User-Agent: Chrome\r\n
Cookie: twid=secref\r\n

GET/ HTTP/1.1\r\n
Host: twitter.com\r\n
User-Agent: Chrome\r\n
Cookie: twid=secref\r\n

(-84, 5)rr(-20, 5)r(-84, 71)

(-84, 5)ss(-20, 6)(-84, 71)

CRIME for SPDY

e Pros
o Still O(W), but with a smaller constant than Two

Tries.
o Very fast, thanks to SPDY.

o Also false positive free.

e Cons
o Can't send many requests at a time if server sets a

maximum limit.
o Different browsers have different implementations of

SPDY header compression.

CRIME for SPDY

e \Workaround
o Chrome and Firefox have disabled header
compression in their SPDY implementations.

* Wehave header ™ §
compression. NOT! |
e SPDY/4 will make CRIME irrelevant

(hopefully).

Compression in TLS

e Specified in RFC 3749 (DEFLATE) and RFC
3943 (LZS).

e Chrome (NSS), OpenSSL, GnuTLS, etc.
iImplement DEFLATE.

e [f data is larger than maximum record size
(16K), it split-then-compress each record
independently (in a separate zlib context).

CRIME for TLS Compression: 16K-1

e 16K is essentially another boundary. BEAST's chosen-
boundary attack strikes again!

e Make a request so big that it will be split into two records
such that:
O 1strecord: GET /<padding>Cookie: twid=s

O 2nd record: ecret

e Simulate the compression of the 1st record for every
candidate.

e Send the request, obtain the compressed length of its 1st
record. Use it to select possible correct bytes.

16K-1

GET /AAAAAFILLTHERECORDAAAAA HTTP/1.1\r\n
16K £ Host: twitter.com\r\n

Cookie: twid=S o o

ecret\r\n
16K

16K-1 POC

def next_byte(cookie, known, alphabet=BASEG4):
candidates = list(alphabet)
while len(candidates) != 1:
url = random_16K_url(known)
record_lens = query(url)
length = record_lens[0]
record = "GET /%s%s%s" (url, REQ, known)
good =[]
for c in candidates:
if len(compress(record + ¢)) == length:
good.append(c)
candidates = good
return candidates|0]

CRIME for TLS Compression

e Pros
o Require only O(logW) requests. Can choose
between longer offline compression or larger number
of online requests.
o False positive free.
o Compression algorithm independent.

e Cons
o While server-side deployment is 40%, Chrome was
the only browser that supported TLS compression.
o zlib versions on victim and attacker should be the
same.

CRIME for TLS Compression

e \Workaround
o Chrome has dlsabledcompre33|on in its ClientHello.

HTTP response gzip compression

e [he most popular compression on the
Internet.

CRIME for HTTP gzip

e Requirement: server echoes back some
client input in the response (e.g., /search?
g=crimeNOtFOuddd).

e Use the echoed input to extract Pll or XSRF
token embedded in the response.

e Two Tries may work, but we haven't tested it
yet.

"We believe”

e TLS compression may resurrect in the near

future
o "Browsers are not the only TLS clients!"

e HTTP gzip may be a bigger problem than
both SPDY and TLS compression

o If you control the network, then a XSRF token is as
good as, if not better, a session cookie.

e Remember: compression is everywhere.

Thanks

e Google, Mozilla, and Dropbox.

e Dan Boneh, Agustin Gianni, Kenny
Paterson, Marsh Ray, Eduardo Vela and
many other friends.

e EKOPARTY xD xD xD!!

Related work

e John Kelsey, Compression and Information
Leakage of Plaintext.

e Adam Langley, post to SPDY mailing list.

https://groups.google.com/forum/#!msg/spdy-dev/B_ulCnBjSug/8caVF1rFJAkJ

Questions?
https://twitter.com/julianor or thaidn@gmail.com

