
BreakingVault
SAP DataVault Security Storage vulnerabilities

Technical details

Author: 

Fernando Russ (fruss@onapsis.com) – Sr. Researcher

Abstract: 

This  document  describes  a  series  of  vulnerabilities  found  at  the  SAP  DataVault  secure
storage.
The SAP Mobile Platform 3.0 has an API called DataVault, which is used to securely store
data on mobile devices. As described by SAP AG [...]"The DataVault APIs provide a secure
way to  persist  and encrypt  data  on the  device.  The data vault  uses AES-256 symmetric
encryption of all its contents. The cryptographic key is computed as a hash of the passcode
provided and a "salt"  value that  can be supplied  by the device application  developer, or
automatically generated through the API[..]“1

1http://infocenter.sybase.com/help/index.jsp?
topic=/com.sybase.infocenter.dc01930.0233/doc/html/aba1321994154298.html 

mailto:fruss@onapsis.com
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc01930.0233/doc/html/aba1321994154298.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc01930.0233/doc/html/aba1321994154298.html


Overview

This  document  covers  and  describes  the  vulnerabilities  (CVE  numbers  pending  to  be
assigned)  enunciated  above,  all  of  them  are  by  products  of  original  security  research
performed at the Onapsis Research Labs between August  2014 and March 2015.

• Keystream recovery for secure storage

• Predictable encryption password for configuration values

• Predictable default encryption password for secure storage

• Use of incorrect cryptographic primitive to check password validity



Keystream recovery for secure storage

Due the incorrect selection of the cryptographic parameter IV used for the AES-256 algorithm
in Cipher Feedback (CFB) operation mode it is possible to recover the keystream for the first
16 bytes of encrypted data of every key and every value in the DataVault. As a result, it is
possible  to  recover  the  first  16  bytes  (first  block)  of  the  plain  text  corresponding  to  an
encrypted piece of data, reverting the encryption process of some values inside the DataVault
without needing the original secret key.

The encryption schema used by the SAP DataVault is based on the AES-256 algorithm using
the Cipher Feedback (CFB) operation mode. As described in NIST SP800-38a2 document this
mode of operation needs a specific parameter IV to be unpredictable (page 11). It also notes
that  the  IV  value  has  not  to  be  reused between  different  executions  of  the  encryption
function using the same key (page 20). 

Specifically,  the  SAP  DataVault  usage  of  AES/CFB  violates  the  afore  mentioned
recommendations having a fixed IV. As a result an attacker can easily recover the keystream
for the first 16 bytes (first block) and then recover the plain text from the encrypted data.
Moreover, since the IV is fixed, it is possible to ensure the presence of several known plain
text values, which can be used to optimize the plain text recovery as described bellow.

Furthermore, due the lack of cryptographic integrity mechanisms in the SAP DataVault an
attacker  recovering  this  keystream  has  the  possibility  of  re  encrypting  (or  modifying  in
practical terms) any encrypted value shorter than 16 bytes.

Exploitation of a non-unique IV value in the mode of operation CFB

Having the Cipher Feedback (CFB) mode of operation described as,

(http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_feedback_.28CFB.29

2http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf 

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf


The encryption process of the first 16 bytes of a plain text (P) and a secret key with an IV,
looks like,

Cp = AESkey(IV)  P⊕

And, there is a known plain text (KP) which is encrypted using the same method, sharing the
same secret key and IV,

Ckp = AESkey(IV)  KP⊕

Due the  lack  of  precautions in  the  selection  of  the  IV  value  (inside  SAP DataVault  it  is
constant) the AESkey(IV) becomes constant, therefore recovering the keystream is reduced to
a simple arithmetic operation,

Ks = (AESkey(IV)  KP)  KP⊕ ⊕
Ks = AESkey(IV)

Having this keystream Ks recovering the plain text P becomes trivial:

P  = Cp  Ks  which is equivalent to:  P = (AES⊕ key(IV)  P)  AES⊕ ⊕ key(IV)



Predictable encryption password for configuration values

The SAP DataVault uses a special password derived from well-known values to encrypt some
configuration values like the count of invalid attempts to unlock a secure store.

This password is a composition of the VaultId value which is available in plain text form in the
secure store container, and a fixed value. Also, the salt used is a fixed value. Both values are
statically defined by the SAP DataVault implementation, not depending on the installation or
the usage.

An attacker needs access to the file containing the SAP DataVault encrypted data, this could
be achieved gaining physical access to the mobile device, or using some any other android
related vulnerability which lets access a specific file in the device.

Leveraging this vulnerability an attacker could read and modify sensitive configuration values
in the SAP DataVault like the count of invalid attempts to unlock the secure store.

Predictable default encryption password for secure storage

The SAP DataVault  has a special  mechanism to generate default  set of  credentials if  no
password/salt is supplied during the creation of the secure storage.

In this mode of operation the password/salt is derived from a combination of fixed value and
the VaultID belonging to the secure storage.

An attacker needs access to the file containing the SAP DataVault encrypted data, this could
be achieved gaining physical access to the mobile device, or using some any other android
related vulnerability which lets access a specific file in the device.

Leveraging this vulnerability an attacker could decrypt the full content of a secure storage.
Weak key stretching algorithm used for passwords calculation

SAP DataVault applies a process of key stretching to the password used for the secure store
database, this process is based in applying a single round of SHA256 over a concatenation of
the password and the salt chosen by the user.

This method is effective to ensure the correct size of the final key (256 bits),  but doesn't
ensure  any  kind  of  key  stretching,  even  the  final  key  strength  will  be  mandated  by  the
SHA256 algorithm being deterministic and fast representing no obstacle for a determined
attacker trying to bruteforce the original value. 

Furthermore, the key stretching algorithm used by the SAP DataVault is 

FinalKey = SHA256( key || salt )    (where || represents 'concatenation')

“key || salt” can be seen as an opaque constant string as the concatenation operation blends
the limits of both values (key and salt), suppose an key K of 5 bytes and a salt S of 3 bytes,



K1= 12345,  S1=123, then FinalKey1 = SHA256( K1 ||  S1 ) → SHA256( 123451234 )

also, suppose that K is 7 bytes and S is 1 byte

K2= 1234567  S2=8 then FinalKey2 = SHA256( K2 ||  S2) → SHA256( 12345678 )

as a result, the use of this kind of key stretching algorithm combined with a user-chosen salt
value  don't prevent a determined attacker to stage some kind of  dictionary or rainbow table
attacks over this.

Use of incorrect cryptographic primitive to check password 
validity

SAP DataVault implements a password checking strategy based on the encryption of a well-
known value with a symmetric cipher algorithm, using the actual password/salt to obtain a
checking blob. To verify if the supplied password/salt is the correct one, the checking blob
value is decrypted and compared against the previously used well-known value.

In particular, SAP DataVault implements this password checking schema using AES-256 in
OFB mode of operation over a well-known check value, plus the whole schema represents a
known-plain text scenario, where the only unknown is the key itself. 

Being an algorithm extremely fast with modern hardware, plus the possibility of verifying the
correct  decryption  against  the  well-known  check  value,  stage  a  perfect  scenario  for  a
dictionary/brute force attack.

Based  in  the  previous  description,  an  dedicated  attacker  can  stage  a  reasonable
dictionary/brute force attack against the stored password.


