
SYSTEM UPDATES: ATTACK AND DEFENSE

Sofiane Mohamed Talmat

sofiane.talmat@ioactive.com

This is a HIGH LEVEL FIRST DRAFT version that is provided to EKOPARTY reviewers more details

addition and rewriting will be done

More examples and technical details about each vulnerability and CVE listed with illustrations will be
added in each category of vulnerabilities for the final version, same as for the LESSON LEARNED and

CONCLUSION in order to avoid system updates vulnerabilities

Abstract—From device firmware to full complex operating
systems, system updates are critical to maintain an up to date
version of the running software, providing security patches and
fixes for vulnerabilities, however many update and upgrade
systems contain vulnerabilities that could make things go
wrong.

In this paper we will not only dissect in details some existing
system update vulnerabilities, we will also deep dive into
common vulnerability concepts discovered during this research
and previous work, we will describe different attack scenarios
and approaches and how this could lead to the whole system
subversion.

We will also talk about both common design and technical
mistakes and best practices on how to design secure system
updates and upgrade for both devices and software.

Index Terms—Update system, software, mobile, Device,
firmware, vulnerability, privilege escalation.

INTRODUCTION
System updates is a critical process that runs at a higher

privilege level than that of a regular user.
During a pentest, the penetration tester could need to

escalate his privileges and exploiting system updates may be
one of the ways to make things happen, as in many cases the
updates are scheduled as a privileged user or the simple user
can start the process by running a specific binary that will use
one or more techniques in order to escalate its privileges in a
specific way or hand over the update to a privileged service in
order to finish the update.

In both cases the attacker being able to exploit an update
process will be able to elevate his privileges and run code as
the privileged service processing the update.

In this paper we will describe with examples common
mistakes within system updates and key areas to look at
during a pentest and how to approach system updates in order
to conduct a successful penetration test by escalating user
privileges to administrative ones.

We will go point per point and describe general
vulnerabilities categories providing the reader with detailed
examples on previous disclosed vulnerabilities and real life
examples faced during engagements that led to privilege
escalation.

VULNERABILITIES
1- Race conditions

Many update systems rely on downloading remote files
either by:

- Downloading an executable update file
- Downloading a configuration file containing update

locations.
In some cases this could lead to race conditions in
cases where the destination folder is writeable by the
user.
For example in the Lenovo Race condition
vulnerability (CVE-2015-2234) a binary is
downloaded to a world writeable folder
“c:\programdata\lenovo\SystemUpdate\newclient” then
run as Administrator.
An attacker could exploit this execution flaw by
writing a small program that overwrites the newly
downloaded executable at a critical time between the
saving of the file and it’s execution and fool the system
update process to run the attacker’s binary under
Administrative privileges.
There are a lot of other situations where a
configuration file (XML for example) is downloaded
containing information and paths of update packages
that that could be ZIP, CAB or other executable in
order to be downloaded and extracted or run for
updates purpose, in some cases those configuration
files are downloaded in a world writeable folders, in
many cases they are under user’s temp folder, so in
case an attacker is able to rewrite those configuration
files, he can fool the update process that there are new
packages needed to be installed and point the update

process to download and run malicious packages with
high privileges.

2- Weakness in communication process
In order for a user to manually run system updates in a
locked down environment, there is a scenario in which
a communication between the binary run by the user
and a pre-installed higher privileged service will take
part in order finish the update process. Taking the
example of the Lenovo vulnerability (CVE-2015-2219),
when a user starts a manual system update, a binary is
downloaded from the remote system, and since the
user has no administrative privileges, the update
process will initiate a pipe communication to a service
running SUService.exe as SYSTEM user. The update
process will ask the service to finish the system update
by running the downloaded binary with higher
privileges.
By exploiting any weakness within the communication,
an attacker can fool the service and ask it to run a
malicious binary with higher privileges.

In the case of Lenovo vulnerability (CVE-2015-2219),
the SUService service is listening on a named pipe and
waiting for client communication, however the
software contains two major vulnerabilities. The first
one is that the high privileged service relies on a
hardcoded key that should be provided by the client
through the named pipe in order to validate the
authenticity of the caller prior to processing the
command. The Service also receives a command line
containing the path to the binary that should be
executed as well as other arguments and parameters.
One such argument is /securitycode which should
contain the security code that is used to validate the
authenticity of the caller, because this value is
hardcoded in the software binaries, an attacker could
extract it and build his own program that will just
connect to the defined named pipe and send a
command line to the service providing as argument
“/securitycode xxxxxxxxxx”. This ends up fooling the
Service that it’s being called by a legitimate update
binary.

3- Use of relative path

Generally in a locked down environment,only
Administrator has write access to the software folder in
order to protect the integrity of the update system from
low level users. However in many cases it is possible
to copy the software folder to a new writeable location
from where you can manually run the update process.

In many cases the binaries use a relative path looking
for executables, DLLs, configuration files and so on.
By copying the folder to the desktop for example, it is
possible to fool the application into loading modified
files.

In many cases I was able during different assessments
to use this technique to perform a dll hijack and force
the binary to bypass specific restrictions or execute
code within the hijacked DLL with higher privileges.

4- Weak or lack of Digital Signature validation

In the previous vulnerabilities, things are much more
easy to exploit when there is no proper digital
signature validation. It will be easy to patch the
binaries in order to bypass digital signature validation.
For example in both Lenovo vulnerabilities concerning
Race Conditions and weak communication categories,
the downloaded binary provided to SUService should
be signed by Lenovo. However, the other vulnerability
about bad signature validation (CVE-2015-2233)
makes things exploitable as the validation is done by
just verifying the subject of the digital signature and
not the validity of the signature.
So by creating a self signed certificate with the same
subject as the valid Lenovo Signature and self sign the
binary, the check will be bypassed and the service will
run the binary assuming that it’s actually signed by
Lenovo.

5- Weak or lack of proper certificate validation
In general, the communication between the host and
update server is done through secured protocols.
However in some cases the certificate trust chain
validation is not done properly and an attacker can
redirect the hostname to a service with a self signed
certificate that will fool the downloader into trusting
the remote system and downloading and installing fake
updates and binaries on the system.

In cases of bad certificate validation or ignoring
certificate errors, a successful attack could be critical
on the target system. In many engagements I used to
use a self signed certificate within a web server that
was able fool the client and install desired binaries on
the remote system.
Another “Feature” from the developers that an attacker
could exploit is the Failover process. I’ve been seeing
during many engagements that developers do fail to a
clear text HTTP connection in case the HTTPS one
fails. A developer may think that in a critical update it
is better to go back to a HTTP connection in case the
HTTPS port is not reachable, however an attacker
could exploit this by closing or dropping HTTPS
connections from a network or router perspective
forcing the application to go back to clear text HTTP
connection that can be easily targeted by a MiTM
attack.

6- Network attacks and clear text communications
A lot of software update system are still using clear
text communication protocol and most of the cases I’ve
found using clear text communication and mostly
using FTP servers are hardware devices pulling
firmware updates from remote FTP servers which will
open door to different kind of network attacks
including MiTM attacks .
One of the other examples of clear text protocols is a
vulnerability that was reported to Fujitsu about their
update Agents, as the agent uses a SOAP
communication over clear text HTTP protocol. The
account used for authentication is transferred encrypted

using a custom encryption algorithm, by reversing that
simple algorithm it was possible to extract the
windows domain and the login information from
sniffing clear text HTTP communication, so anyone
able to sniff a the clear text communication will be
able to decrypt and extract high privileged windows
domain accounts.

A nice and interesting tool called evilgrade written by
Francisco Amato can be used for exploiting different
network attack scenarios within different vulnerable
software. The tool can be found under
“https://github.com/infobyte/evilgrade”

7- File unpacking attacks
Many developers are still using custom code to unpack
and unzip files, however they may fail in validating
and parsing files within archives. So for example by
extracting a zip file containing a filename with a
directory traversal pattern, an attacker could corrupt
the system by writing or overwriting files on the
remote system.
It is actually pretty simple to create a corrupted zip file
with a path traversal in it. This could lead to an escape
from the restricted download folder to write files
outside on the system.

During one of my previous engagements I was able to
spot a similar case within a mobile application in
which the zipped update file was downloaded within
the mobile download folder and then extracted after
validating the digital signature.
The first vulnerability consisted in a race condition
where it was possible to change the ZIP file between
the time of the validation of digital signature and the
extraction. The second vulnerability was about the
extraction process where in case of a successful race
condition exploitation, it was possible to write arbitrary
files on the mobile file system using a path traversal
vulnerability within the modified zip file.

Another known attack within zip files is called
ZipBomb that could lead to a DOS and consists of
creating a specific zip file that is only some Kilobytes
in size and when extracted it will lead to many
petabytes. An example of such file is the famous 42.zip
file.

8- Unattended installation log files and memory dump
Within the projects I conducted, I faced some locked
down systems where unattended installation and
update log files leaked both local and remote system
credentials as secret keys.
It is actually common that update systems store
sensitive information within log files or error files in
case the update is facing a problem or a crash.

On the other side it is possible to disclose sensitive
information by attaching to the user process or dump
it’s content from memory, many credentials or
sensitive keys could be disclosed.

IMPACT
Since Update systems mainly goes through

privileged users, exploiting those kind vulnerabilities could
lead to an elevation of privileges on the system and this
could be either locally or remotely.

Update systems is an interesting research area as it
will reveal than many software are still suffering from lack
in design or execution flow vulnerabilities as one single
development error could lead to a critical finding as there is
no place for Medium or Low risk once exploited.

LESSONS LEARNED AND BEST PRACTICES
<<under development, providing best practices in

each of the above category and detailed technical approach
on how to avoid the discussed vulnerabilities>>

REFERENCES AND FURTHER READINGS
• ………..
•

